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A theory is developed which described the scattering of electromagnetic waves by the electron density 
fluctuation of an electron-phonon system. The frequency spectrum of the scattered radiation is calculated 
by the temperature-dependent Green's function method and is alternatively derived by an elementary 
treatment in terms of dressed electrons and phonons. The theory may find its application in the study of 
incoherent scattering of electromagnetic waves in the vacuum ultraviolet region by thin metals. The result­
ing frequency spectrum of the scattered radiation shows resonances corresponding to the collective response 
of the electrons to the lattice vibrations, and to the collective excitation of plasma oscillations. 

I. INTRODUCTION 

THE present work is concerned with the derivation 
of an expression for the cross section of incoherent 

scattering of electromagnetic waves from a normal 
metal. We consider a simplified model for the metal, 
composed of electrons and phonons, and study the 
power scattered from the system when it is exposed to 
incident electromagnetic waves with frequencies above 
the penetration frequency. The radiation scattered is the 
sum of the Thomson scattering from each of the elec­
trons in the system (the ions contribution is clearly 
negligible because of their large mass), and thus depends 
on the density fluctuations of the electrons. While in the 
usual Thomson scattering problem one deals with ran­
domly distributed fixed electrons, the present theory is 
concerned with the effect of the motion of the electrons 
due to the thermal fluctuation of the system. 

The problem of the scattering of x rays and light from 
solids was thoroughly investigated in the last decades,1,2 

and theoretically satisfactory explanations of the experi­
ments have been given. Less attention was paid to the 
incoherent scattering of electromagnetic waves in the 
vacuum uv region from metals. In this region the wave­
length is much larger then the lattice spacing and, if the 
frequency is above the penetration frequency and the 
system is optically thin, the scattering is predominantly 
due to the conduction electrons so that the cross section 
shows some features of these electrons. The purpose of 
our work is to give a microscopic treatment of the 
scattering mechanism, taking into account both the 
Coulomb interaction between electrons and the electron-
phonon interaction. 

The scattered radiation is determined by the spectrum 
of electron density fluctuations and this, in turn, de­
pends on the coupled motion of electrons and ions in the 
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metal as well as the individual and collective aspects of 
the motion of the electrons. The tendency of the elec­
trons to screen out the ions and each other influences 
significantly the spectrum of density fluctuations. This 
is reflected especially in the fact that there are large 
density fluctuations, for a given wavelength, at both the 
frequencies of the lattice vibrations and the frequency 
of the collective plasma oscillations of the conduction 
electrons. Hence, it is expected that the spectral shape 
of the scattered waves will show resonances at these 
frequencies. While the effect of lattice vibrations is 
similar to that studied at other frequency regions of 
electromagnetic waves, the resonance at the vicinity of 
the plasma frequency of the conduction electrons is 
peculiar to the region to be discussed here. To some 
extent our treatment is similar to the one employed in 
classical plasmas.3 

We start with the expression of the scattering cross 
section given in terms of the autocorrelation function 
of the electron-density operators.3 The system is 
assumed to be represented by the Bardeen-Pines4 

Hamiltonian, and thus both electron-phonon and elec­
tron-electron interactions are explicitly introduced. The 
autocorrelation function is investigated by the tem­
perature-dependent Green's function method5,6employing 
a diagram technique to obtain the leading asymptotic 
contribution for the scattering cross section when the 
number of electrons in the Bohr radius is large, and the 
wavelength of the field is larger than the Bohr radius. 
We also assume that the waves are not attenuated ap­
preciably, i.e., the system is optically thin, but still there 
are many particles present across it. An alternative 
method employing a self-consistent test particle is also 
applied to facilitate an elementary derivation of the 
results and to obtain a simple physical interpretation 
for them. We conclude the paper with a brief discussion 
of the results, pointing out the possibility of utilizing 

3 M. N. Rosenbluth and N. Rostoker, Phys. Fluids 5,776 (1962), 
and other references cited therein. 

4 J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955). See also 
J. Bardeen, in Handbuch der Physik, edited by S, Fltigge 
(Springer-Verlag, Berlin, 1956), Vol. II . 

6 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960). 
6 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Zh. 

Eksperim. i Teor. Fiz 36, 900 (1959) [translation: Soviet Phys.— 
JETP 9, 636 (1959)]. 
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the scattering of electromagnetic waves from thin 
metals to study some properties of the electron-phonon 
system. 

II. THE GENERAL FORMALISM 

Following Rosenbluth and Rostoker3 we consider a 
plane wave with frequency co0 and wave vector Ko=coo/c 
incident on the system, which occupies the volume V. 
In the first Born approximation, the differential cross 
section for the scattered waves per unit frequency per 
unit solid angle in the direction of K per unit incident 
power is given by3 

cr(co)=:^fo2Cl-sin2acos2(0-^o)]5(Ko~K,coo-co), (1) 

where N=nV is the total number of electrons, ro=e2/mc2 

is the classical electron radius, a is the angle between K 
and K0, and $ and </>o are the azimuthal angles that locate 
K and the incident electric field. Relativistic effects are 
neglected and the system is assumed to be in thermal 
equilibrium. The spectrum of electron density fluctua­
tions 5(k,co) is defined by 

where 

5t(k : 

5(k,co) = 2Re5 t(k,o)), (2) 

1 r" 
,") = / 

2VnJo 
dre1' 

X <»(k , r )»( -k , 0 ) + w ( - k , 0)n(k,r)> (3) 

and Re stands for the real value. In Eq. (3) 

n(k,t) = eiHtn(k,0)e-iHt (4) 

is the spatial Fourier transform of the electron density-
operator in the Heisenberg representation, H is the total 
Hamiltonian of the system, and the average of an 
operator A is given by 

(A)=Tx{e^^"N-^A}, (5) 

where /3 is the inverse temperature in energy units, ju and 
N are, respectively, the chemical potential and the total 
number operator of the electrons and 

e-^=rYx[e^(^-H)y (6) 

We also set fi= 1. The remainder of the report is devoted 
to the calculation of the function S(k,o>). 

In order to facilitate the temperature-dependent 
Green's function method5,6 we define a real function 

1 
$(k,co) = - £ exp[j8(0+Mtf * - £ * ) ] 

"XT m,s 

X(m\n(k,0)\s)(s\n(-k,0)\m)d(E,-Em-o>), (7) 

thus, 
1 r do)' 

5 t ( k , c o ) = - i — / r ( l + e - ^ > ( k , c o ' ) , (8) 
2n J w'—w—ie 

and Eq. (2) reads 

S (k,co) = 7T <S> (k,co). 
n 

(9) 

In Eq. (7) m and s represent eigenstates of the Hamil­
tonian and the total number operator, with 

H\m) = Em\m), N\m) = Nm\m), (10) 

and Nm=Ns in Eq. (7), due to the fact that n(k,t) 
commutes with N. 

We now define a Green's function 

G ( k , « ) = - ( r { » ( k , « ) n ( - k > 0 ) } > (11) 

in the real domain —p<u<p. In Eq. (11), T is the 
Dyson ordering operator and 

n(k,«) = e ^ » ( k , 0 ) f f f . (12) 

By expressing G(k,w) in terms of the sum over states, 
as in Eq. (7), one easily convinces himself that 

G(k,^+i8) = G(k,w); (13) 

hence, its "Fourier transform" with respect to u 

G n (k)= f duei2™u/PG(k,u) » = 0 , ± 1 , ± 2 , •••, (14) 
./o 

enjoys the property 

Gn(k)= f — 
J «'• 

du' 

If we now introduce a function 

( l - e - ^ > ( k , o / ) . (15) 

F(k 
r da' 

, * ) = / — (l-e-e«'Mk,o>>), (16) 
J 0)' — Z 

which is analytic in the entire z plane, except for a cut 
on the real axis, we find that F(k,z) is the analytical 
continuation of Gn(k) from the infinite set of points 
ilim/fiin^O) on the imaginary axis of z to the entire 
plane, except for the real axis. Furthermore, if for any 
function f(z) in the complex z plane, we denote by 

/ ± ( « ) = lim f(z), e - H - 0 , (17) 

we obtain from Eq. (16) 

$>(k,co)=— i-
F+(k,co)-F-(k,a>) 

(18) 
2 i r ( l - € - * 0 

and finally 
1 F+(k,o>)-F-(k,co) 

5(k,o>) = - coth(ij8o)) : . (19) 
n 2i 

Equation (19) provides us with the required relation 
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between the spectrum fluctuation of the density and the 
analytical continuation of the "Fourier transforms" of 
the temperature-dependent Green's function G(k,u). 
The problem is thus reduced to the calculation of Gn(k). 

III. THE SPECTRUM OF THE ELECTRON-DENSITY 
FLUCTUATIONS 

A. The Electron-Phonon Hamiltonian 

Before we turn to the calculation of £(k,co) we discuss 
briefly the electron-phonon Hamiltonian to be used 
here. We follow Bardeen and Pines4 assuming a mon-
atomic crystal of n ions and electrons per unit volume. 
We introduce phonon coordinates to represent the ion 
motion, and second quantization representation for the 
electrons. The phonons are assumed to be either longi­
tudinal or transversal, and only the longitudinal 
phonons interact with the electrons (long-wavelength 
region). We define creation and annihilation operators, 
ap

f and av, obeying the usual anticommutation relations, 
to represent the Bloch states \j/v. The Bloch equation is 

[ + F ( r ) \ p ( r ) = E(p)^ p ( r ) , (20) 
L 2m dr2 J 

where V(r) stands for the effective potential due to the 
equilibrium position of the ions, compensated by a uni­
form negative charge. An extended zone scheme is to be 
used. The Hamiltonian for the electrons is 

fi'e=Z^(p)^pt^P 
P 

1 

-\—L'^)L apWvvWv (21) 
2V k p,p' 

with 

<£(£)= [dtdr'+p+kKr)fP>Hr')-^~*P'+k(r')*P(r), (22) 
J (r-rO 

where we assume, in the spirit of Bloch's theory, that 
<j>{k) depends on the absolute value of k [ior free 
electrons <j> (k) = 47re2/&2]. 

The longitudinal phonons are represented by the 
Hamiltonian 

H= £ 0*6kt4k, (23) 
k(zone) 

where b^ and bk are the creation and annihilation 
operators of phonons in the k state obeying the usual 
commutation relations, and Q* is determined solely by 
the ion-ion interaction (in the negative background). 
The summation is restricted to the first Brillioun zone 
for the phonons. 

The interaction between the electrons and the 
phonons is represented by the Hamiltonian 

ff^EFkGkEflp-ktop, (24) 
k p 

where 

V^i-nM)-1'2 dr 

X ^ + k * ( r ) | ~ E e * — J 7 ( r - R i ) ^ ^ \ ( r ) . (25) 
L 3 dr J 

The matrix element of the interaction depends only on 
the wave vector difference between the initial and the 
final states of the electrons. We have also F k * = F_ k . 
The sum over k in Eq. (24) extends over all values, 
while 

ek=(212,)-1/2[Jk+J_kt] (26) 

refers to the reduced vector in the first zone. This 
amounts to the inclusion of Peierls-umklapp processes.7 

In Eq. (25), M is the ion mass, £k is a unit vector in the 
k direction, and U(r—Rj) is the effective potential of 
interaction between an electron in position r and an ion 
in equilibrium position R/. The total Hamiltonian is now 

H=He+Hp+Hep, (27) 

with the irrelevant parts (e.g., the transverse phonons) 
left out. 

B. Green Function Technique 

We rewrite Eq. (11) in the interaction representation 

G ( M = -Z<C/(/3)>„-' 
V P,P' 

X(T{av+kKu)a,(u)a,^(0)a^(0)U(fi)})0j (28) 

where use has been made of the second-quantization 
representation of the density operator 

»(k) = Z«p+k t a p . (29) 
p 

The symbol ( )o corresponds to the average defined 
in Eq. (5), but for noninteracting particles (Ho 
= L p ^ ( k ) V ^ P + Z k ^ k + ^ k ) , 

U(0) = exp\-f duHr(u)\, (30) 

where 

1 
Hi— — Hl<t>(k) X) flp+kfyp'tflp'-kflp 

2V k p,p' 
+ZVkQkZav-*% (31) 

k P 

and 
Hi(u) = e^Hie~uH*, (32) 

with the same convention for av (u). 
The basic rules for the perturbation expansion of 

7 The umklapp processes are not explicitly treated in this paper 
but they may be included without major changes of the theory. 
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G»(k), the Fourier transform of Eq. (28), are given by 
Luttinger and Ward5 with a slightly modified procedure 
to include the ions' motion. We employ a diagram tech­
nique, indicating by a solid line the free-electron 
propagator 

gp(u)==(T{aJ(u)aj>(0)})o, 

which has the form 

q,am 

fo(ri)=Cfi-£(p)J-1, 

in the "Fourier transform" representation, with 

1 
n=Mr(2H- l ) -+M, J = 0 , ± l , ± 2 , ••• . 

(33) 

(34) 

(35) 

FIG. 2. The diagrammatic representation of the integral equation 
for the effective electron-electron interaction. 

where am is given by Eq. (38). Equation (39) is now 
solved for Uk(am), and yields 

By a wavy line we indicate the free phonon propagator 

W W = ( n & W f t ( 0 ) } > o , (36) 

Uk(am) = 
<j>(k)+\Vk\*Dk»(am) 

l - Q k W C ^ W + | F k | 2 P k ° ( a m ) ] 
(40) 

or 

2 V («») = -
- 1 

am= i2wm/fi, w = 0 ± 1, ± 2 , 

(37) 

(38) 

where 

1 1 
(?k(a») = + — S ~ Z) gp+k/2(f ?+«m)gp-k/2(f 0 

V p R i 

and by a dashed line the Coulomb interaction <j>(k) of 
Eq. (22). After Migdal8 we assign to each electron-
phonon vertex the quantity Vk (or Fk*) and neglect all 
vertex corrections. Thus to each phonon line corresponds 

(2x)s 
dp 

/p-f-k/2— / p - k / 2 

E ( p + k / 2 ) - E ( p - k / 2 ) - a * 
and 

/ k = [ ^ W p ) - r i + l J - i 

(41) 

(42) 

C. The Approximation Method 

is the Fermi distribution for the electrons. 
I t is convenient to cast Eq. (40) into another form 

showing explicitly the Coulomb and phonon parts of it. 
Defining the electron dielectric function (in its Fourier 

We consider the leading asymptotic contribution to representation) 
the electron-density fluctuation spectrum in the long-
wavelength region, in the limit where many electrons are € (k,aTO) = 1—<i> (k)Qk («m), (43) 
in the Bohr sphere, and the electron-ion mass ratio m/M , , „ t „, , 
is small. The class of diagrams contributing to S(k,co) in a n d t h e d r e s s e d P ^ n o n propagator 
this case are given in Fig. 1. The saw-toothed line re- r-
presents the effective interaction shown in Fig. 2 and it Dk(am)==Dk°(am)\ 1-
it is given by9 L 

^ k W = 0 W + | ^ | 2 ^ k ° ( a m ) + C 0 ( ^ ) + | ^ | 2 Z ) o
k ( a m ) ] 

2Q*(am) A W , X T 
£ > k ° ( a j , 

,01m) J 

1 1 
X— E - Z gj>+w({i+a™)gv-k/2(ti)Uk(am), (39) 

V P R I 

we are able to write 

Dk\am) = Dk(aAl-

e(k,o:m) 

\V^Qk(am) 
Dk(a« ) 

e(k,am) J 

FIG. 1. The class 
of diagrams which 
contribute to the 
spectrum of electron 
density fluctuations 
in the present ap­
proximation. 0 

and thus 

Uk(am) = 
<t>(k) |Fkj2£>k(am) 

e(k,am) [ e ( k , a m ) ] 2 

(44) 

(45) 

(46) 

The physical interpretation of the right-hand side of 
Eq. (46) is simple. The first term represents the usual 
dynamically screened Coulomb potential due to the 
collective motion of the electrons, and the second term 
corresponds to a "dressed" phonon Dk(am) interacting 
with the electrons through a dynamically screened 

s A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958) electron-phonon interaction Vk/e(k,am). 
[translation: Soviet P h y s . - J E T P 6 , 966 (1958)]. U s i n g ^ p r e s c r i p t i o n o f L u t t i n g e r a n d W a r d 5 

9 D. Pines, in Introduction to The Many Body Problem (W. A. 
Benjamin, Inc., New York, 1961). generalized to include the phonon effects, we calculate 
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the contribution of the diagrams of Fig. 1, and obtain 

G»(k) = Gk(«„)[l+ £rk(«»)ek(«»)3, (47) 

with ccn=2rin/l3, w=0, ± 1 , ± 2 , •••. The analytical 
continuation of G«(k) causes no difficulties and yields 
[see Eq. (16)] 

where by Eq. (41) 

1 
&(*) = 

(2x)3 J 1 

/ p + k / 2 — / p - k / 2 

£(p+k/2)-£(p-k/2)-z 
(49) 

F(k,8) = g k ( a ) C l + I 7 k ( j ! ) g k ( a ) ] , (48) 

and similar definitions for Ut(z), D^{z), and e(k,z). 
The spectrum of density fluctuation is now given b y 

substi tuting Eq. (48) into Eq. (19) [with Eq . (17)] 

n / 1 1 t /n ak
+(co)[l+^k+(co)ek+(co)]-ek-(co)[l+f/k-(co)eic-(co)] 

6* (k,w) = - coth (i/fo) 
n li 

or, by using Eq. (46), we obtain our final general result 

1 1 
5(k,co) = -coth(i/3co)— 

n li 

Qk+(co)-Qk-(co) 

\*M\* 
|F k 

T h e first p a r t of 5 on the r ight-hand side of Eq . (51) is 
clearly due to the electron density fluctuation without 
taking into account the presence of the phonons in the 
system. This would be the result one obtains dealing 
with an electron gas. The second p a r t has the effect of 
the presence of phonons with the electrons dynamically 
shielding them. 

For a given wave-vector k, t ha t is, a given incident 
wave and detector location, the co dependence of the 
scattering cross section is essentially the following: 

(i) T h e first p a r t of s, the "elect ron" par t , can be 
wri t ten explicitly as 

Sei ( * , « ) = - c o t h (ij&o) 
n 

1 

€(ft,a>)l2(2ir)8 

X dp (/p+k/2—/p-k/2) 

with 

€(&,co) = !-<£(&) 

X « [ £ ( p + k / 2 ) - £ ( p - k / 2 ) - « ] , 

1 

(52) 

W 
< / • X dp 

/ p + k / 2 " / p - k / 2 

T h e main body of Sei corresponds to a Doppler 
broadening, due to the individual motion of the elec­
trons, and is characterized b y a weak continuum, as 
shown schematically in Fig. 3. Besides this cont inuum 
there is a sharp resonance, corresponding to the collective 
effect of the density fluctuation, located a t the vicinity 
of the point where bo th the integral and e(k}co) of Eq . 
(52) decrease simultaneously (see Fig. 3). Rewriting 
Eq . (52) as 

7r 1 Ime(k,co) 
Sel(k,o>) = - c o t h ( J / J « ) — — — , (54) 

n <f>(k) e(ft,w) 2 

V(k,«)/ («)- - )I>k-(w) 

(50) 

(51) 

we notice t ha t the resonance occurs a t the point where 
the real pa r t of the electron dielectric function vanishes, 
Ree(&,co) = 0, namely near the frequency, copy of the 
electron plasma oscillation of the system. The height 
and the width of this peak are determined by Ime(k,co) 
a t the vicinity of o)p. 

(ii) The "phonon" pa r t of the cross section contri­
butes mostly a t low frequencies, i.e., frequencies of the 
order of the phonon spectrum, and dies away a t higher 
frequencies. Thus , we can rewrite the second pa r t of 
Eq. (51) approximately as 

k 1 1 
Sph(k,co) = - c o t h ( J c o # ) -

n li [>(*)]2 

! - € ( * , « ) 

X[Z>k+(co) AT(co)], (55) 

where use has been made of Eqs . (43) and (S3). Fur ther , 
if we use Eqs. (44) and (37) and define 

£>(£,aO=£>k+(o>) 

=Z)k°+(co/ 1-
|Fk |2 l -e+(k,a )) 

1W e+(k,co) ) " ' 
-Z)k°+(co) , (56) 

E($+k/l)-E(p-k/l)-o>-i5 

$ - * + 0 . (53) -o 

fc> <b) 

w-a»0 

FIG. 3. Schematic sketch (not to scale) of the spectrum of the 
electron density fluctuations, (a) The individual electron con­
tinuum. (b) The collective electron-electron resonance due to 
excitation of plasma oscillations, (c) The collective electron-phonon 
resonance, due to the cloud of electrons participating in the lattice 
vibrations, 
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or with Eq. (53) and due to the resonance behavior around o)k 

P(ft,o>) = l ( ( c o + « ) 2 - 0 * 2 ) , 
1 

SPh (£,«) = - coth (|j8wfc) 
n 

Vk 

we find 

X6-++0 (57) 

—Dk+(a>)-Dk~(o)) = ImD(k,a)), (58) 
2i 

X 
e(&,cofc)l2 

e(&,cofc) 

I 7 P I 

2c0fc (CO — C0j fc ) 2 +7n 2 

(65) 

and finally 

5 p h (*,«) = - c o t h (|j8w) 
n mi 

XI ) ImD(h,w). (59) 
\ e(£,co) / 

The function 5ph shows a resonance shape centered 
around the "real" frequencies of the phonons, corre­
sponding to the given wavelength k. The resonance fre­
quencies are determined by the dispersion relation 

| F k | 2 l - e ( M 
F(w) = u*-Qk*— • = 0 . (60 

Under the assumption that the damping of the lattice 
waves is very small, the dressed phonons frequency 
obeys 

| F k | 2 r\-e(k,m)-\ 
c o * 2 = ^ + — - Re (61) 

L e(k,coic) J 

and the damping is given by 

\Vk\
2 Ime(k,o)k) 

2o3k<t>(k)\e{kyoik)\
2 

7k = , |7*|«w*. (62) 

A further simplification is apparent if we notice that 
co k<>EF (the Fermi energy) and we may write 

(63) 
Vk* 1-

co*2=0,2+ 
-e(fc,0) 

:(*,0) 

which leads to the well-known result 

0Jk=±ck 

for long wavelengths, with c— (m/SM)1I2UF—the sound 
velocity, and UF the Fermi velocity. 

To conclude we notice that for positive frequencies 
(the negative frequencies may be treated in the same 
manner) 

1 |Y*| 
ImD (*,«) = , (64) 

2o)k (to—cofc)2+7fc2 

5Ph is the contribution to the scattering cross section 
due to the coupled motion of the electrons and the 
phonons. Equation (65) shows a Lorentzian shape 
around the phonon frequencies co&; the width and the 
height are determined by jk and 1/Y&, respectively. 

IV. SELF-CONSISTENT TEST-PARTICLE APPROACH 

In the present section we rederive the results of the 
previous section by employing a method, well known in 
classical problems, of the self-consistent test particle.3 

This method facilitates an elementary derivation and, 
moreover, leads to a very simple physical interpretation 
of the results. The response of the system to a "test 
particle" with an assigned motion and dynamics is 
calculated and then an ensemble average with respect to 
the test particle taken in a self-consistent manner. The 
concept of a "dressed particle" is thus introduced 
naturally. 

A. Dressed Electrons 

Consider a test particle, with the same properties as 
the electrons, embedded into the system of interacting 
electrons. The Hamiltonian of the system is given by 
Eq. (21) and by the interaction term 

Hi=£ '<t> (? )L ap+qtQ:po_qfQ:poap, (66) 
q p 

where po is the assigned momentum of the test particle 
and ap1*, ap are its Fermion creation and annihilation 
operators. The equation of motion of the (field) electron 
annihilation operator is given by 

d 
i—aP=£(p)aP+L *(fe)E flp^p'+kflp-k 
dt k P' . 

+ Z *(^)«P0-qf«PO^P-q (67) 
q 

and a similar one for aj. If we define a ' distribution 
function" ( p + k | p | p ) by the equation (in the Heisen-
berg representation) 

<p+k |p(0 |p> = Tr{Z>apt(0a jH.k(0}, (68) 

where D is the density matrix of the system, we obtain 

[V+£(p)-£(p-r-k)l<p-r-k| P|p) 
L dt J 

= Z «Kk')[«(kV)+apo-k't('W()] 

X C ( p + k - k ' | p | p ) - ( p + k | p | p + k ' ) ] , (69) 
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where, to first approximation, correlations and exchange 
terms were neglected.10 Here, 

»0M)=£<P+k|p|p> 

is the density of the field electrons. 
The response of the field electrons to the test particle 

is now obtained by assuming the right-hand side of 
Eq. (69) to be a small perturbation on the thermal 
equilibrium solution 

< P + k | p | p H 5 k , 0 / p , (71) 

where fv is the Fermi distribution function given by 
Eq. (42). Thus, the perturbed part of (p+k | p | p) obeys 
the equation 

f-+£(p)-E(p+k)+<K&)(/p+k-/p)Z 
{ dt P 

x(P+k|p(»(0|p) 

=<t> W[/p-/p+ k>P O-k t a p o e-«E(Po)-^(P«-wi ( , (72) 

where use has been made of 

ap(0=aptf-'*<P>«, (73) 

and a similar expression for « / ( / ) . Solving Eq. (72) for 
the density response we obtain 

»^(k,0 = 
*(*) 

*[> ,£ (Po ) -£ (po -k ) ] 

/ P + k — / P 

P E ( p + k ) - E ( p ) - £ ( p 0 ) + £ ( p o - k ) - i § 

Xapo-k^poe^^Cpo^Cpo-k)]^ 

S-++0 (74) 

where e(&,co) is given by Eq. (53). 
We now consider the test particle with its associated 

cloud [Eq. (74)] as a dressed electron with an assigned 
momentum po; hence, the corresponding density opera­
tor reads 

1 

6 [ k , E ( p 0 ) - £ ( p o - k ) ] 

Xe-iiE(PO)-E(PO-^tavo_^avo 9 (75) 

where the a's were replaced by the usual a's. Substitut­

ing Eq. (75) into Eq. (3) yields 

5t (k ,0>) = / ^ r€ i a , r X)(^PO-k/2 t %o+k/2^po+k/2 t ^po-k/2 

2nV J PO 

+ ^po+k/2t«po-k/2^po-k/2t^p0+k/2) 

1 

x- e[*, £ ( p o - k / 2 ) - E ( p 0 + k / 2 ) ] | 2 

X e-i[^(p0-k/2)-^(po+k/2)] r ? (75) 

where the average is to be taken over a "free" Hamil-
tonian of the dressed electrons. The spectrum density is 
now, by Eq. (2) and p0—> — p 

7T 1 

s &,<*)=—E 
n V p ie (Mi2 

X[/p+k/2(l — /p-k/2)+/p-k/2(l— /p+k/2)] 

X 5 [ £ ( p + k / 2 ) - E ( p - k / 2 ) - c o ] , (77) 

and, after some algebraic manipulation and replacing 
( V t O E p by [V(27r ) 3 ] /dp , we recover Eq. (52), which 
is the required result. 

By this approach we are led to a simple picture of the 
physics behind the mechanism of the scattering. The 
scattering comes from a system of particles dressed by 
a cloud around them. Both the core and the cloud con­
tributes to the cross section, the first leads to a one-
particle continuum and the latter to a sharp resonance 
due to the collective excitations. 

B. Dressed Phonons 

In a similar way we can treat the formation of the 
cloud around a test-phonon. We consider a test phonon 
in the k state immersed in the system of interacting 
electrons. The Hamiltonian is given by Eqs. (21), (23), 
and (24) without the summation over k in the last two 
equations. The equation of motion for ap is the same as 
in Eq. (67) with the last term on the right replaced by 

FkQktfp-k. (78) 

Making the same approximations as before, we end with 
the equation 

j ;-+£(p)-£(p+£)+,Kk) ( /p + k- /p)£ 
I dt P 

X <P+k I P(1) (t) I p)= Fk[/P-/P+k]ek (0, (79) 

for the response of the electrons to the test phonon 
[^compare with Eq. (72) and Ref. 11], while the 

10 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959). 11 A. Ron, Phys. Rev. 131, 2040 (1963). 
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dynamics of the phonon are given by 

d2 

(—wW)=-Fk*E<P+k|p<»(;)|p>. (80) S(k'u)
 n2a£4,(k)J 

\dt2 / P 

phonons, we finally obtain, for positive frequencies 

1—e(k,o)]c) 

We now Fourier transform Eqs. (79) and (80) in time 
and use Eq. (53) to obtain 

Vk l - e ( M 
W(i)(k,w) = Qk(co), (81) 

* ( * ) *(*,«) 

and thus Qk{u) obeys 

| F k | 2 l - e ( M 

<t>(k) e(fe: 

— Q k ( « ) = o . 
,a>) J 

(82) 

The " t rue" frequencies of the dressed phonon are thus 
given by 

; 7 k | * ! -« ( * ,» ) 

* ( * ) «(*,») 
(83) 

which is the same dispersion relation displayed by 
Eq. (60). For very small damping factor Y& we can 
write 

Qk(t) = (^O-^CJkr-^-iH-i7*)«+5-kV(-ir-ir*)«] 9 (84) 

where £k and bk* are the annihilation and creation 
operators for the phonons. Finally, going back to 
Eq. (81), we find for the electron cloud 

»(k,0 = -
Vk 1 (l-€(*,C0ArRy*) 

.^k€—i(cofc+i7fc)« 

tf(ft) (2wft)
1/2l e(fe,a>*+fy*) 

1 — e (&,&>*—iT*) 1 
+ 6«kVC«*-*T*)« . (85) 

We now substitute Eq. (S3) into Eq. (3) and read 

5t(k,o>) = 
1 | F k 

2^7 2a>* C*(*)]s 

1 — e (*,«&) 

e(k,Uh) 

Jo 

+ <&_kt6_k+&-k&-k t)e+i(wfc-^)r}. (86) 

Performing the time integration and noticing that 

(bd>f+bfb*) = coth(ij&o*), (87) 

where the average is with respect to the "free" dressed 

e(k,oik) 

Xcoth(J/5wfc) 
7ft 

(88) 

which recovers Eq. (65). 
The interpretation of this result is now simple. The 

scattering comes from electrons associated with the 
dressed phonons, i.e., from electrons participating in the 
lattice vibrations by following the ions of the lattice in 
their motion. The ions of the lattice are shielded by the 
electrons and while oscillating they carry with them 
their electron clouds, which gives rise to the resonance 
in the scattering cross section. 

V. DISCUSSION 

The coupled motion of electrons and ions in a metal is 
reflected in the spectrum of the density fluctuations of 
the electrons, and this, in turn, can be observed by 
detecting the incoherent scattering of electromagnetic 
waves from thin films of metal. Although a simplified 
model for the metal was the basis of the theoretical 
investigation in the present paper, it is conceivable that 
the theory would yield a fairly good agreement with the 
real situation, when applied to metals like Na. Thus, the 
incoherent scattering experiment can, in principle, pro­
vide a tool for studying the elementary collective 
excitations in the electron-phonon system, i.e., lattice 
vibrations, with the electrons participating collectively 
in the motion of the lattice, and the electron plasma 
oscillations. 

To conclude we wish to make the following comments: 

(i) The amount of radiation scattered from the 
system is extremely small (the cross section is pro­
portional to r0

2~ 10~25 cm2) and very sensitive detectors 
must be used. Moreover, we were concerned only with 
an incident radiation with highly peaked frequency 
spectrum, while in reality care should be taken to correct 
for the width of the spectrum. 

(ii) The frequencies of the incident waves are much 
higher then the lattice vibrations frequencies; hence, 
the shifts due to the phonon resonances are very small, 
and can be detected only by very sensitive equipment. 
Furthermore, the influence of the transverse phonons 
was not considered here and should be taken into 
account for practical problems. 

(iii) The widths and heights of the resonances are 
also influenced by other processes (e.g., electron-phonon 
collisions contribute to the very small width of the 
plasma oscillation resonance) and should be considered 
for practical problems. 
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